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In a Comment by I. R. Senitzky [Phys. Rev. E 51, 5166 (1995)] on a recent paper by Li et
al. [Phys. Rev. E 48, 1547 (1993)] dealing with energy balance for an oscillator coupled with a
heat bath, it is claimed that the formula given there for the power supplied to the oscillator by the
bath, while formally correct, is misleading, since it does not vanish at absolute zero. In reply, it is
pointed out that different parts of the physical system, which is the oscillator plus the bath plus
their coupling, can and do exchange energy, even at absolute zero.

PACS number(s): 05.30.—d, 05.40.+j

In a recent paper [1] on energy balance for a dissipative
system, we discussed the case of an oscillator coupled to
a heat bath and used the quantum Langevin equation to
obtain a formula for the rate work is done by the bath on
the oscillator. In his Comment [2], Senitzky asserts that,
while our results are correct, they “ ... are misleading.”
He goes on to claim that the quantum fluctuations at
zero temperature “... cannot do work.” In this Reply,
we describe what appears to us to be the essential point:
the physical system is the oscillator coupled to a heat
bath, not the uncoupled oscillator. Different parts of
this system can and do exchange energy, even at zero
temperature.

First, however, we cannot let pass the fact that the
Comment repeats an old mistake: the proposed power
spectrum of the fluctuating force is that of white noise
(independent of frequency) and not the Planck spectrum
of quantum noise. So far as we know, a correct formu-
lation of the quantum Langevin equation was first given
in the Ford, Kac, and Mazur paper [3], but its form and
the basis for obtaining the equation have by now been
understood from a variety of points of view [4,5]. For the
Ohmic case of a frequency-independent friction constant,
the case treated in the Comment, the correct quantum
Langevin equation for a particle of mass m in an external
potential V(z) takes the form [4]

mi + ¢z + V'(z) = F(t). (1)

Here F'(t) is a Gaussian random operator force with mean
zero and correlation

%(F(t)F(t') + F(t"F(t)) = /:0 dwP(w) cos[w(t — t')],
(2)
where P(w) is the power spectrum, given by
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P(w) = %Mcoth(hw/%T) _ % (—hf"— + ——E"———) .

2 | ew/kT 1

The commutator of the random force is

(F(t), F(£)] = % /0 ” dwwsinfw(t — )]

= 2ihC8 (t —t'), 4)

where &' is the derivative of the delta function. Note that
the correlation and commutator are both proportional to
the friction constant ( and that their form is independent
of the external potential energy V(z). These are direct
consequences of the fluctuation-dissipation theorem [6].
In particular, we emphasize that the power spectrum of
the random force is the Planck spectrum, with the ad-
dition of the contribution of the zero-point fluctuations.
Only in the classical limit, A — 0, does the spectrum
become the flat spectrum of white noise.

The form of the correlation given in Eq. (3b) of the
Comment, which is taken from Eq. (7) of the second
of Refs. [2] of the Comment does not satisfy any of the
criteria noted above. The same form appears in each of
Refs. [2-4] of the Comment. One might ask how such
an error could have arisen and, indeed, persist in the
literature? The answer, we believe, is that people had in
mind the case of an oscillator, for which the potential is
of the form V(z) = imwiz? and the Langevin equation
takes the form

mi + (& + mwiz = F(t). (5)

In this case, the correlation function for the oscillator dis-
placement ean easily be computed and, with the correct
form (2) for the force correlation, the result is
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S (e(®a(t) + 2(t)e(®)

- / dw | a(w) |? P(w) cosfw(t — )], (6)
0
where a(w) is the oscillator susceptibility (response func-
tion), given by

1
—mw? — iw( + mw

a(w) = 3 (7
So far this is an exact result, consistent with the cor-
relation (2). It can also be obtained directly, without
reference to the form of the random force, using the
fluctuation-dissipation theorem [7,8]. Note that we use
the word fluctuation in the sense of Refs. [7] and [8], to in-
clude both thermal and quantum fluctuations. Next, we
use the fact that in those early works people restricted
consideration to the zero coupling limit: { — 0. In this
limit one can easily show that

¢l a@) [P 556 = wo) (8)

With this we obtain the familiar result for the correlation
of the free oscillator [9],

S (@)t + a(t)a(®)

N ki coth(hwo/2kT)

CTo cos[wo(t —t")]. (9)

The fact that in this limit the oscillator response func-
tion gives rise to a § function at the oscillator frequency
wo means that one could replace P(w) with the constant
P(wo) in the expression (6) for the correlation of z and
still get the correct expression for the free oscillator cor-
relation in the zero coupling limit. On the other hand, if
one makes the same replacement in the force correlation
(2), which is what is done in Refs. [2] and [4] of the Com-
ment, one gets the § function correlation of white noise.
This is clearly in contradiction with the general form (2)
for the correlation of the random force and is wrong. In
this connection, we should mention the important pa-
per of Benguria and Kac [10], who showed that for the
nonlinear oscillator one gets in the zero coupling limit
the correct form of the correlation only with the correct
forms (3) and (4) for the power spectrum and commuta-
tor. Thus, even in the zero coupling limit, the form of
the force correlation given in the Comment is wrong.

We turn now to a discussion of the energy balance, us-
ing the above results. Here it is important to recognize
that the physical system is that of an oscillator coupled
to a heat bath (what in the Comment is called the loss
mechanism). The microscopic Hamiltonian for this sys-
tem is of the form

H = Hosc + Hbath + Hcouplinga (10)

with the three terms corresponding to the oscillator, heat
bath, and coupling terms in the system Hamiltonian.
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This is a system with an infinite number of degrees of
freedom, each with its corresponding zero-point oscilla-
tion. At absolute zero this system is in its ground state
and, trivially, there is no work done on or by the system.
But, for any finite coupling, no matter how weak, Hs
does not commute with H. Therefore, the ground state
of H is not the ground state of H,s. and, even at absolute
zero, the oscillator energy must fluctuate. To be specific,
the mean square fluctuation of Hs is not zero,
A‘I:Ic?sc = (Hgsc) - <HOSC>2 75 0. (11)
Again, this fluctuation does not vanish at absolute zero
and no matter how weak the coupling. The point of the
paper of Li et al. [1] is that this fluctuation is driven
by a fluctuating force exerted by the bath. The work
done per unit time by this force is, of course, balanced
by the dissipative loss, so there is no net work done on
the oscillator.
This fluctuation can be calculated explicitly and with-
out any assumption about the strength of the coupling.
First of all, the oscillator energy operator takes the form

Hoe = lm;iz + 1mu.rgmz. (12)
2 2

If one makes the identification ¢ = (m/hwo)!/2% and p =
—(muwo /) %z, which is implied by the “solution” given
in Egs. (2) of the Comment, this operator is identical
with that given in Eq. (1) of the Comment. Next, the
exact expression (6) for the correlation of x can be used to
calculate (z2) and (42) at absolute zero. With these we
obtain an exact expression for the mean of the oscillator
energy at T' = 0:

A Cz 1/2 B
(Hose) = — (Wg - m) cos™! (215‘00)

+ 1 (‘i> , (13)

2mm wo

where w, is a high frequency cutoff. Since = and z are
Gaussian operators with mean zero, the mean of the
square of Hopsc can be expressed in terms of products
of (z%) and (¢2). The resulting expression is, however,
rather complicated, so we will not display it here. In-
stead, we follow the Comment in making the weak cou-
pling approximation, { € mwp. In this approximation,
the result (13) takes the simple form

(Howe) 2 ™20 4 % 1n(u fuo), (14)

and the mean square fluctuation becomes
AHZ,. = (H )-—hﬁln(w Jwo) (15)
0sC osc) c/wo)-

Thus we see explicitly, even in the weak coupling approx-
imation, that the mean of the oscillator energy is above
its ground state energy and that the fluctuations in this
energy do not vanish. In this sense, we feel it is wrong to
say that the fluctuations at 7' = 0 “... cannot do work”



51 COMMENTS 5171

and that the bath (loss mechanism) “... cannot, in re-
ality, provide energy at T' = 0.” One part of a physical
system in its ground state can and does exchange energy
with another part. Perhaps the difficulty here is a confu-
sion of the weak coupling approximation ({ < muwp) with
the zero coupling limit ({ — 0). Of course, the uncou-
pled oscillator in its ground state cannot give up energy.
The results we have exhibited are consistent with this.

Finally, we consider the form of the energy balance.
Forming the time derivative of H,s., using the quantum
Langevin equation for the oscillator and then forming the
expectation, one can readily show that

%(Hosc) + (@) = %(iF + F). (16)
‘We emphasize that this is an exact equation; we have not
made the weak coupling approximation. It corresponds
to Eq. (4) of the Comment, but is not quite equivalent
with that equation, even in the weak coupling approxi-
mation. The differences, however, are not crucial. Now,
each of the expectations occurring in this equation is an
equal-time expectation and must be independent of time

as a consequence of the time-displacement invariance of
the system. Therefore the time derivative of (H,s.) must
be zero and the remaining terms must be equal. In our
paper [1], we evaluated the right hand side (actually for
the more general case of a frequency-dependent friction
constant) which we interpreted as the rate work is done
by the fluctuating force acting on the oscillator. In the
Comment it is objected that this interpretation is ”un-
physical,” since this power does not vanish at absolute
zero, when the system is in its ground state. We feel
that this objection is met by our remarks above. On
the other hand, one could simply subtract the zero-point
contribution from each term in the energy balance equa-
tion (16), which would remove the objection by sleight of
hand. This, in effect, is what is is done in the Comment.
But the zero-point fluctuations are real and it is of inter-
est to see that the energy balance holds even at absolute
Zero.
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